Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(3): e14396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456670

RESUMO

Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses.


Assuntos
Ecossistema , Florestas , Folhas de Planta , Fenótipo , Ecologia
2.
Nat Commun ; 15(1): 2385, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493170

RESUMO

Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries. We show that the composition and diversity of fungal, but not bacterial, species is tightly coupled to both forest biotic conditions and a seven-fold variation in tree growth rates and biomass carbon stocks when controlling for the effects of dominant tree type, climate, and other environmental factors. This linkage is particularly strong for symbiotic endophytic and ectomycorrhizal fungi known to directly facilitate tree growth. Since tree growth rates in this system are closely and positively correlated with belowground soil carbon stocks, we conclude that fungal composition is a strong predictor of overall forest carbon storage across the European continent.


Assuntos
Micobioma , Carbono , Microbiologia do Solo , Florestas , Árvores/microbiologia , Solo
3.
Sci Total Environ ; 916: 170258, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246378

RESUMO

In macroecology, shifting from coarse- to local-scale explanatory factors is crucial for understanding how global change impacts functional diversity (FD). Plants possess diverse traits allowing them to differentially respond across a spectrum of environmental conditions. We aim to assess how macro- to microclimate, stand-scale measured soil properties, forest structure, and management type, influence forest understorey FD at the macroecological scale. Our study covers Italian forests, using thirteen predictors categorized into climate, soil, forest structure, and management. We analyzed five traits (i.e., specific leaf area, plant size, seed mass, belowground bud bank size, and clonal lateral spread) capturing independent functional dimensions to calculate the standardized effect size of functional diversity (SES-FD) for all traits (multi-trait) and for single traits. Multiple regression models were applied to assess the effect of predictors on SES-FD. We revealed that climate, soil, and forest structure significantly drive SES-FD of specific leaf area, plant size, seed mass, and bud bank. Forest management had a limited effect. However, differences emerged between herbaceous and woody growth forms of the understorey layer, with herbaceous species mainly responding to climate and soil features, while woody species were mainly affected by forest structure. Future warmer and more seasonal climate could reduce the diversity of resource economics, plant size, and persistence strategies of the forest understorey. Soil eutrophication and acidification may impact the diversity of regeneration strategies; canopy closure affects the diversity of above- and belowground traits, with a larger effect on woody species. Multifunctional approaches are vital to disentangle the effect of global changes on functional diversity since independent functional specialization axes are modulated by different drivers.


Assuntos
Florestas , Solo , Clima , Plantas , Microclima
4.
Mol Ecol ; 32(24): 6924-6938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873915

RESUMO

Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.


Assuntos
Pradaria , Microbiota , Microbiologia do Solo , Microbiota/genética , Fungos/genética , Bactérias/genética , Plantas/microbiologia , Solo
5.
Trends Plant Sci ; 26(12): 1236-1247, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419339

RESUMO

A longstanding research divide exists in plant ecology: either focusing on plant clonality, with no ambition to address nonclonal plants, or focusing on all plants, ignoring that many ecological processes can be affected by the fact that some plants are clonal while others are not. This gap cascades into a lack of distinction and knowledge about the similarities and differences between clonal and nonclonal plants. Here we aim to bridge this gap by identifying areas that would benefit from the incorporation of clonal growth into one integrated research platform: namely, response to productivity and disturbance, biotic interactions, and population dynamics. We are convinced that this will provide a roadmap to gain valuable insights into the ecoevolutionary dynamics relevant to all plants.


Assuntos
Ecologia , Plantas , Ecossistema , Plantas/genética , Dinâmica Populacional
6.
Sci Rep ; 10(1): 19253, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159118

RESUMO

This paper explores which traits are correlated with fine-scale (0.25 m2) species persistence patterns in the herb layer of old-growth forests. Four old-growth beech forests representing different climatic contexts (presence or absence of summer drought period) were selected along a north-south gradient in Italy. Eight surveys were conducted in each of the sites during the period spanning 1999-2011. We found that fine-scale species persistence was correlated with different sets of plant functional traits, depending on local ecological context. Seed mass was found to be as important for the fine-scale species persistence in the northern sites, while clonal and bud-bank traits were markedly correlated with the southern sites characterised by summer drought. Leaf traits appeared to correlate with species persistence in the drier and wetter sites. However, we found that different attributes, i.e. helomorphic vs scleromorphic leaves, were correlated to species persistence in the northernmost and southernmost sites, respectively. These differences appear to be dependent on local trait adaptation rather than plant phylogenetic history. Our findings suggest that the persistent species in the old-growth forests might adopt an acquisitive resource-use strategy (i.e. helomorphic leaves with high SLA) with higher seed mass in sites without summer drought, while under water-stressed conditions persistent species have a conservative resource-use strategy (i.e. scleromorphic leaves with low SLA) with an increased importance of clonal and resprouting ability.


Assuntos
Fagus/genética , Florestas , Folhas de Planta/genética , Característica Quantitativa Herdável , Sementes/genética
8.
Trends Ecol Evol ; 35(9): 763-766, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32650986

RESUMO

Dominants are key species that shape ecosystem functioning. Plant dominance is typically assessed on aboveground features. However, belowground, individual species may not scale proportionally in relation to their aboveground dimension. This is especially important in ecosystems where most biomass is allocated belowground, including grassy and shrubby biomes.


Assuntos
Ecossistema , Plantas , Biomassa , Raízes de Plantas
9.
Nat Commun ; 11(1): 3486, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661354

RESUMO

Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Europa (Continente)
10.
Data Brief ; 28: 104947, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31886369

RESUMO

Plant functional trait data aggregated at the community level (i.e., community weighted mean, CWM) are fundamental to study plant-environment relationships. Here, we provide a large database of CWM values of twelve traits reflecting several plant functions, including leaf, seed, whole-plant, clonal and bud bank traits. The CWMs were calculated in 201 forest stands (a statistically representative sample of all the Italian forests) across three biogeographic regions: Alpine, Continental, and Mediterranean.

11.
Ecol Evol ; 9(20): 11716-11723, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695881

RESUMO

AIM: To date, despite their great potential biogeographical regionalization models have been mostly developed on descriptive and empirical bases. This paper aims at applying the beta-diversity framework on a statistically representative data set to analytically test the consistency of the biogeographical regionalization of Italian forests. LOCATION: Italy. TAXON: Vascular plants. METHODS: Forest plant communities were surveyed in 804 plots made in a statistically representative sample of forest communities made by 201 sites of Italian forests across the three biogeographical regions of the country: Alpine, Continental, and Mediterranean. We conducted an ordination analysis and an analysis of beta-diversity, decomposing it into its turnover and nestedness components. RESULTS: Our results provide only partial support to the consistency of the biogeographical regionalization of Italy. While the differences in forest plant communities support the distinction between the Alpine and the other two regions, differences between Continental and Mediterranean regions had lower statistical support. Pairwise beta-diversity and its turnover component are higher between- than within-biogeographical regions. This suggests that different regional species pools contribute to assembly of local communities and that spatial distance between-regions has a stronger effect than that within-regions. MAIN CONCLUSIONS: Our findings confirm a biogeographical structure of the species pools that is captured by the biogeographical regionalization. However, nonsignificant differences between the Mediterranean and Continental biogeographical regions suggest that this biogeographical regionalization is not consistent for forest plant communities. Our results demonstrate that an analytical evaluation of species composition differences among regions using beta-diversity analysis is a promising approach for testing the consistency of biogeographical regionalization models. This approach is recommended to provide support to the biogeographical regionalization used in some environmental conservation polices adopted by EU.

12.
Glob Chang Biol ; 23(6): 2473-2481, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28208238

RESUMO

Here, we conducted a meta-analysis of experimental drought manipulation studies using rainout shelters in five sites of natural grassland ecosystems of Europe. The single studies assess the effects of extreme drought on the intraspecific variation of the specific leaf area (SLA), a proxy of plant growth. We evaluate and compare the effect size of the SLA response for the functional groups of forbs and grasses in temperate and sub-Mediterranean systems. We hypothesized that the functional groups of grasses and forbs from temperate grassland systems have different strategies in short-term drought response, measured as adjustment of SLA, with SLA-reduction in grasses and SLA-maintenance in forbs. Second, we hypothesized that grasses and forbs from sub-Mediterranean systems do not differ in their drought response as both groups maintain their SLA. We found a significant decrease of SLA in grasses of the temperate systems in response to drought while SLA of forbs showed no significant response. Lower SLA is associated with enhanced water-use efficiency under water stress and thus can be seen as a strategy of phenotypic adjustment. By contrast, in the sub-Mediterranean systems, grasses significantly increased their SLA in the drought treatment. This result points towards a better growth performance of these grasses, which is most likely related to their strategy to allocate resources to belowground parts. The observed SLA reduction of forbs is most likely a direct drought response given that competitive effect of grasses is unlikely due to the scanty vegetation cover. We point out that phenotypic adjustment is an important driver of short-term functional plant response to climatic extremes such as drought. Differential reactions of functional groups have to be interpreted against the background of the group's evolutionary configuration that can differ between climatic zones.


Assuntos
Secas , Pradaria , Folhas de Planta/crescimento & desenvolvimento , Europa (Continente) , Poaceae
13.
Glob Chang Biol ; 20(2): 429-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24132996

RESUMO

Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long-term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient-poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient-rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLemp N). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat-specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition.


Assuntos
Biodiversidade , Ecossistema , Eutrofização , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Europa (Continente)
14.
J Environ Monit ; 11(4): 782-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19557230

RESUMO

Knowledge of accuracy and precision rates is particularly important for long-term studies. Vegetation assessments include many sources of error related to overlooking and misidentification, that are usually influenced by some factors, such as cover estimate subjectivity, observer biased species lists and experience of the botanist. The vegetation assessment protocol adopted in the Italian forest monitoring programme (CONECOFOR) contains a Quality Assurance programme. The paper presents the different phases of QA, separates the 5 main critical points of the whole protocol as sources of random or systematic errors. Examples of Measurement Quality Objectives (MQOs) expressed as Data Quality Limits (DQLs) are given for vascular plant cover estimates, in order to establish the reproducibility of the data. Quality control activities were used to determine the "distance" between the surveyor teams and the control team. Selected data were acquired during the training and inter-calibration courses. In particular, an index of average cover by species groups was used to evaluate the random error (CV 4%) as the dispersion around the "true values" of the control team. The systematic error in the evaluation of species composition, caused by overlooking or misidentification of species, was calculated following the pseudo-turnover rate; detailed species censuses on smaller sampling units were accepted as the pseudo-turnover which always fell below the 25% established threshold; species density scores recorded at community level (100 m(2) surface) rarely exceeded that limit.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental/normas , Árvores/fisiologia , Biodiversidade , Monitoramento Ambiental/métodos , Itália , Controle de Qualidade , Árvores/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...